Approximate-Karush-Kuhn-Tucker Conditions and Interval Valued Vector Variational Inequalities
نویسندگان
چکیده
منابع مشابه
Studying Maximum Information Leakage Using Karush-Kuhn-Tucker Conditions
When studying the information leakage in programs or protocols, a natural question arises: “what is the worst case scenario?”. This problem of identifying the maximal leakage can be seen as a channel capacity problem in the information theoretical sense. In this paper, by combining two powerful theories: Information Theory and Karush–Kuhn–Tucker conditions, we demonstrate a very general solutio...
متن کاملSequential Optimality Conditions and Variational Inequalities
In recent years, sequential optimality conditions are frequently used for convergence of iterative methods to solve nonlinear constrained optimization problems. The sequential optimality conditions do not require any of the constraint qualications. In this paper, We present the necessary sequential complementary approximate Karush Kuhn Tucker (CAKKT) condition for a point to be a solution of a ...
متن کاملDuality and the “ convex ” Karush - Kuhn - Tucker theorem ∗ Erik
Our approach to the Karush-Kuhn-Tucker theorem in [OSC] was entirely based on subdifferential calculus (essentially, it was an outgrowth of the two subdifferential calculus rules contained in the Fenchel-Moreau and Dubovitskii-Milyutin theorems, i.e., Theorems 2.9 and 2.17 of [OSC]). On the other hand, Proposition B.4(v) in [OSC] gives an intimate connection between the subdifferential of a fun...
متن کاملEnhanced Karush-Kuhn-Tucker condition and weaker constraint qualifications
In this paper we study necessary optimality conditions for nonsmooth optimization problems with equality, inequality and abstract set constraints. We derive the enhanced Fritz John condition which contains some new information even in the smooth case than the classical enhanced Fritz John condition. From this enhanced Fritz John condition we derive the enhanced Karush-Kuhn-Tucker (KKT) conditio...
متن کاملA note on solution sensitivity for Karush-Kuhn-Tucker systems
We consider Karush-Kuhn-Tucker (KKT) systems, which depend on a parameter. Our contribution concerns with the existence of solution of the directionally perturbed KKT system, approximating the given primaldual base solution. To our knowledge, we give the first explicit result of this kind in the situation where the multiplier associated with the base primal solution may not be unique. The condi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: WSEAS TRANSACTIONS ON MATHEMATICS
سال: 2020
ISSN: 1109-2769
DOI: 10.37394/23206.2020.19.28